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Outline 

•  Higgs production at the LHC
–  The heavy top approximation

•  Top mass effects at NNLO
–   Asymptotic expansion

–   Problems at small-x

•  High-energy limit and kT-factorization

•  Matched cross-section
•  Conclusions



•  The Higgs boson is the missing particle of  the SM
•  Its discovery is the main reason the LHC has been built for 

•   The main production channel is gluon-gluon fusion via a quark loop

Higgs production at the LHC 
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QCD corrections 
•  The cross-section can be computed in perturbative QCD

•   NLO corrections turn out to be huge ( ~ 100 %) [Spira et al. 1995]
•   The next order is needed to asses the convergence of  the series
•   The full calculation is beyond the current reach (diagrams with up to 3 loops 
    and massive internal lines)
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•  EW precision data tell us that the SM Higgs mass should be   300 GeV
• This is well below the two top threshold:  
• We can integrate out the top quark and work in an effective theory (EFT)

•  Major benefit: one less loop

•  NLO                     [Spira et al. 1991; Dawson, 1991] 
•  but also NNLO     [Anastasiou and Melnikov, 2002; 
                                 Harlander and Kilgore, 2002;
                                 Ravindran, Smith and van Neerven, 2003]

The heavy top approximation 
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How good is it ? 

•  The top mass dependence is usually kept at LO, while higher orders are 
computed in the EFT:

•  When tested against exact NLO the EFT is accurate at the percent level for 
   mH< 2 mt

•  Surprisingly the agreement is of  order 10 % also for mH ~ 1 TeV ! 

What is the reason for this spectacular agreement ?
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•  The hadronic cross-section is dominated by soft and virtual terms (delta and plus)
•  These contributions are almost insensitive to the top mass
•  For instance the NLO coefficient function in the gg channel is:

•  This should remain true at NNLO as well
•  Can we make a more quantitative statement ?
•  We can compute top mass suppressed contributions to the NNLO cross-section

Dominant contributions 
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Asymptotic expansion 
•  Full NNLO calculation with top mass not currently feasible
•  One can perform an asymptotic expansions of  the Feynman diagrams 

         [e.g. Smirnov 2002]
•  The cross-section can be written as 

•  The first term is the EFT one

•  Top mass suppressed corrections to NLO known for a long time 
         [Dawson, Kauffman 1993]

•   Now also computed at NNLO by two different groups
         [Harlander, Ozeren 2009
         Pak, Rogal, Steinhauser 2009]

•  Tools exist to automatize the calculation (not going into the details)

           … however …
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Problems at large ŝ 
•  The asymptotic expansion assumes

•  Clearly at the LHC the partonic c.o.m. energy can reach values far beyond mt
•  The expansion breaks down in the high-energy region 
•  This breakdown manifests itself  in inverse powers of

•  Spurious power-like growth at small-x
   appears disastrous !
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•  In order to compute finite top mass corrections at NNLO we can use   
   asymptotic expansion

•  This is OK in the region below threshold, where the top mass is the largest   
   scale in the process

•  This region dominates the cross-section after convolution with parton      
   luminosity

•  We need a different method to compute the hard tail of  the partonic   
   coefficient functions at NNLO

So far… 



•  In order to compute finite top mass corrections at NNLO we can use   
   asymptotic expansion

•  This is OK in the region below threshold, where the top mass is the largest   
   scale in the process

•  This region dominates the cross-section after convolution with parton      
   luminosity

•  We need a different method to compute the hard tail of  the partonic   
   coefficient functions at NNLO

•  We can use kT-factorization 

So far… 



QCD factorizations  

•  Hard processes : collinear factorization Q2 ! Λ2
QCD

Σ(τh, Q2) =
∫ 1

τh

dx1

x1

∫ 1

τh

dx2

x2
Σ̂gg

(
τh

x1x2
,
Q2

µ2

)
F (x1, µ

2)F (x2, µ
2)

parton densities
longitudinal momentum fractions of  the 
on-shell incoming partons



QCD factorizations 

•  Hard processes : collinear factorization

•  High energy processes: kT-factorization

Q2 ! Λ2
QCD
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QCD

unintegrated parton densities

transverse momenta of  the off-shell 
incoming partons
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High-energy factorization  

•  We consider Mellin moments of  the off-shell cross section:

•  So that the formula factorizes

•  To make contact with usual collinear factorization we have introduced the 
Mellin moments of  the integrated PDFs
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QCD evolution equations 

DGLAP: Q2 evolution for N moments of  the parton density

BFKL: small-x evolution for M moments of  the parton density
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Duality relations 

•  At high energy and large Q2  both BFKL and DGLAP are valid

•  They admit the same leading twist solution

•  The kernels satisfy (consistency) duality relations
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•  We define the impact factor in the following way:

•  the explicit N dependence is sub-leading, hence we set N=0

•  the high energy behaviour is found by inverting the M-Mellin transforms using  
  the pole condition from the evolution equations:

•  one obtains:

Coefficient functions at high energy 
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•  Originally used for heavy flavour production 

•  DIS and DY are more delicate because collinear singularities 

     (due to massless quarks) must be consistently factorized

•  Direct photon: final state singularities

What has been computed so far 

Catani, Ciafaloni, Hautmann  Nucl.Phys.B366:135-188,1991. 
Ball, Ellis   JHEP 0105:053,2001.  

Catani,  Hautmann Nucl.Phys.B427:475-524,1994. 
SM, Ball Nucl.Phys.B814:246-264,2009 

Diana, Nucl.Phys.B824:154-167,2010.  



Computation in kt-factorization 
•  We compute the LO off-shell cross section for 

•  The impact factor is 

•  The form factor ensures that the Mellin integrals have finite radius of  convergence 
  when N = 0

•  Only single poles ( ie single logs) when we identify 
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Partonic results 
•  We numerically evaluate the coefficient of  the leading logarithm at small-x in 
  the gg channel
•  We then compute the small-x behaviour of  the other channels using colour 
  charge relations

•   We obtain

•  We checked the NLO coefficients against the full result.
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•  We construct an approximation to the exact cross-section by matching the 1/mt   
  expansion to the small-x limit (with the full mt dependence)
•  In order to test this procedure we first study the NLO case 

•  The convergence of  the approximate result toward the exact one is excellent
•  We apply the same procedure to the next order
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Hadronic results (NLO) 



Hadronic results (NNLO) 
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•  At NNLO we compute ratios of  the our approximation to the EFT results

•  Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC
•  The EFT approach is fully justified to NNLO (for the inclusive cross-section)



Conclusions 
•  I have presented a calculation for Higgs production in g-g fusion to NNLO

•  Below threshold finite top mass corrections are included performing asymptotic 
  expansions of  the Feynman diagrams

•  In the high partonic centre of  mass region this approach fails

•  The small-x limit has been computed using kT-factorization and then matched 
  to the 1/mt expansion

•  Finite top mass effects at NNLO are below 1% both at the Tevatron and LHC

•  The EFT approach is fully justified to NNLO (for the inclusive cross-section)

•  This calculation is an example of  a fruitful interplay between fixed-order and 
  resummation techniques !



Thank you ! 


